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Since structural changes in a possibly transformed financial time series
may contain important information for investors and analysts, we consider
the following problem of sequential econometrics. For a given time series we
aim at detecting the first change-point where a jump of size a occurs, i.e.,
the mean changes from, say, myg to mg + e and returns to mg after a possibly
short period s. To address this problem, we study a Shewhart-type control
chart based on a sequential version of the sigma filter, which extends kernel
smoothers by employing stochastic weights depending on the process his-
tory to detect jumps in the data more accurately than classical approaches.
We study both theoretical properties and performance issues. Concerning
the statistical properties, it is important to know whether the normed delay
tirne of the considered control chart is bounded, at least asymptotically. Ex-
tending known results for linear statistics employing deterministic weight-
ing schemes, we establish an upper bound which holds if the memory of the
chart tends to infinity. The performance of the proposed control charts is
studied by simulations. We confine ourselves to some special models which
try to mimic important features of real time series. Qur empirical results
provide some evidence that jump-preserving weights are preferable under
certain circumstances.

Keywords: Digital image processing, EWMA control chart, financial econo-
metrics, nonparametric smoothing, structural changes.

1 Introduction

Modern financial markets produce huge sequential data streams containing
important information for investors and financial analysts, which have to
make their decisions in a sequential fashion. Since structural changes may
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have severe implications on the decisions, there is a strong need to be in a
position to detect change-points, where structural changes start, as soon as
possible. Recent work on this subject has benefitted from results obtained
in statistical process control for industrial production processes. It provides
both a reasonable statistical framework and a rich collection of statistical
methods to approach the problem. The main tools studied there are con-
trol charts which aim at monitoring a sequential stream of observations. A
signal is given if there is evidence that the process is no longer in a state
of statistical control but should be considered as out-of-control, e.g., since
a jump in the mean (level) of the process is present.

Noting that the problem to detect a jump in an univariate time series
is a one-dimensional version of the problem to detect an edge in an imn-
age, the present article studies a control procedure which is based on a
nonparametric estimator called sigma filter. The sigma filter is designed to
reproduce jumps and edges, respectively, accurately and has been devel-
opped and studied in digital image processing. In contrast to smoothing
methods, the sigma filter has the attractive feature to reproduce jumps of
certain heights exactly at the timepoint of their occurrence, provided the
error distribution is concentrated on a finite interval. Thus, in this article
we study whether sequential econometrics can benefit from the sigma filter.

We will now introduce the general setup. Suppose we are observing a
possibly non-stationary stochastic process, {Y(¢) : t € T}, in continuous
time, T = [tg,00), with E(I?(t)|) < oo for all £ € T. Assume that Y () can
be decomposed in a possibly non-homogenous drift m(¢) and a zero-mean
innovation process {€{(t) : t € T}, i.e.,

Y(t) =m(t) +&t), (teT). (1)

This means, structural changes are modeled in the mean function m(t).
In the sequel we shall use the notation Y(f),%,... for quantities of the
continuous time framework and will denote by Y, €,,, ... the corresponding
discrete time quantities.

The concern of this paper is to study a jump-preserving kernei method
which can serve to analyze and detect structural change-points where the
process mean m(t) changes from a slow-varying behavior to a fast-varying
behavior. This estimator, the sigma filter, has been first applied for non-
parametric control chart design by Rafajlowicz (1996). As shown by Pawlak
and Rafajlowicz (1999), it appears as a special case of the more general
vertical regression approach discussed there in detail. For methods based
on classical kernel estimators we refer to Schmid and Steland (1999} and
the references given there.

We will address two types of deviations from an in-control state which
are motivated by financial applications. Many (financial) processes can be
modeled by stationary processes plus a smooth drift function for long time
periods, which are interrupted by short periods of rapid changes of the pro-
cess, sometimes lasting only a few days. This type of irregularity can even
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take the form of a type I outlier (cf. Fox (1972)). For instance, squared
daily returns of stocks may exhibit such structures which are often mod-
eled parametnically by GARCH-type models. Further, it may happen that
for a long period of time the process is stationary, followed by a period
where a smooth drift is present. Sometimes this irregular behavior is intro-
duced by a rapid and sometimes even jump-like increase or decrease. It is of
considerable interest to detect both types of change-points as soon as pos-
sible, since they indicate structural changes which often can be interpreted
in economic terms. For instance, the value of an option on a security can
change dramatically, when the volatility of the option’s underlying increases
or decreases.

To make the terms slow-varying and fast-verying precise, we shall study
two different models. First, we may consider peak-like deviations

m(t) = mo + Htn > £,)8(2), (2)

where d(¢) is an arbitrary function with values in R and &(¢) # 0. Here and
in the sequel 1{A) stands for the indicator function for the expression A,
i.e., 1{A) = 1if Ais true and 1(A) = 01if A is false. In this model the change
to a fast-varying behavior is modeled by a non-constant drift function. If
8(t) = a # 0 for all t € T, we obtain the classical change-point model.
Second, we may model a fast change by imposing another assumption on
4(t), namely

8(t) is differentiable with & (f;) # 0. (3)

In this case m(f) is differentiable with m'(t) = 0 for all ¢ € to, ty) and
m' (g ¢) # 0. In both models tq is called change-point if t < 00. If there is
some s > 0 so that 5( ) =0and 6‘( ) = 0, respectively, for all t > t,+s, t,+s
may be called second change-point. Since our proposal to handle model (3)
is to apply our proposal for mode! (2) after an appropriate transformation
of the data, there will be no confusion about the assumptions on 6(t). The
two models are illustrated in figure 1.

The focus of this paper are sequential change-point detection proce-
dures. However, there are various results on a posteriori methods where
observatious before, near, and after the change-point are available. Brodsky
and Darkhovsky (1993) provide a review of various nonparametric methods,
asymptotic results, and comparisons. A posteriori methods to detect jumps
or sharp cusps nonparametrically have been studied by several authors.
Ferger (1994a, 1994b, 1995} provides asymptotic results for change-point
estimators based on U-statistics. Hall and Titterington (1992) proposed a
method where left, right, and central smooths are calculated at each design
point, where for the central smooth the nearest, say, m, data points are
chosen, and for the left (right) smooth the corresponding nearest to the left
(right) are selected. Based on these calculations a final estimate is proposed
vielding an edge- and peak-preserving regression estimate. Methods based
on wavelets have been considered in Ogden {1994) and Wang (1995).
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Fig. 1 Illustration of the change-point models (2} and (3). The left panel shows a
peak-like out-of-control situation {8 = 1} with change pointst, = l and t,+s = 3,
whereas the right panel illustrates a mean function which is quadratic during the
out-of-control period [1,3) and linear when the process is in control.
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The organization of the paper is as follows. In Section 2 we provide a
definition of our change-point model for the more realistic case that the
process is sampled at discrete time peints. In Section 3 the sigma filter
and the associated detection procedure is introduced. Section 4 presents
asymptotic results about our proposal. We show that under some regularity
assumptions, in particular Cramér’s condition, the sigma filter has expo-
nential tails. Further, and more important, an upper bound for the normed
delay time is established. Section 5 provides simulation studies to get some
insight into the performance of the proposed method.

2 Change-point model in discrete time

We shall now assume that the process {Y, : ¢t € T} is observed at a sequence
{t: <ta < ...} C T of fixed and ordered time points. To be consistent with
model (1) assume

Yo = ma + en, neN,

where Y, = Y(ta), myn = m(tn), €n = &(t,). We shall assume that {,}
is a stationary sequence in discrete time N. For a random design we may
argue conditionally on {¢,} if {Y,.} and {t,} are independent. However, in
the sequel we assume a fixed design with respect to time.
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The discrete time analogon of model (2) is now given by
My = My + l(tn z tq)gnv n € N, (4)

where 6, = g(tn) #0, n €N, and t, = {t,] + 1. A simple discrete-time
version of (3) is to consider the differential ratios

My — Mp--

dn = , neN

tn - tn—l
Then d,, = 0 for all ¢, < t,, and it seems reasonable to define the change-
point in this case by

di, #0.

Obviously, any control chart designed to detect a change-in-mean situa-
tion can be used to analyze model (4), simply by applying it to the data
{(Yn,tn) : n € N}. Analogously, since the random variables

Yo—-Y,_

Dn _In n 1‘ ne€ N,

tn - tnfl
satisfy E(D,) = d,, we may simply employ such a control chart by applying
it to the transformed data {(D,,{,) : n > 2}. To simplify notation we shall
renumber this sequence and denote it again by {(Dy,t,) :n > 1}.

3 A jump-preserving control chart

The application of Shewhart charts based on linear statistics 3 ;. , w(t;,t)Y;
evaluated at t = tn, {w(t;,t,)} being an appropriately defined weighting
scheme, has one severe drawback. These estimators are primarily designed to
provide smooth estimates for the process mean. If a fast, perhaps even jump-
like change occurs, these estimators tend to oversmooth. Consequently, the
corresponding control charts may perform badly. In digital image processing,
where detection of edges, i.e., ‘two-dimensional jumps’, is an important task,
the same problem arises. Lee (1983) proposed a solution, the sigma flter
approach, whose one-dimensional analogon is given by

_ 2 Knlti — tn)km (Vi - Y2)Yi
E;'l:1 K:h(tj - tn)kM(Yj - Yn) ‘

Here, &£ and K are two non-negative kernels, and kps( - ) and Kp( - ) are
the rescaled versions using positive bandwidths M and h, respectively. This
estimator has been studied by Godtliebsen (1991) and Godtliebsen and
Spjetvoll (1991), and recently by Chiu et al. (1998) in a non-sequential
setting.

The sigma filter smoothes the data not only with respect to time but
also with respect to y. In particular, if both k¥ and K are equal to the
uniform kernel, #p , puts a rectangle of sizes h and M, respectively, with
upper right corner equal to (Yy,t,) on the data and estimates My , by the

(5)

MR = MR N
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arithmetic average of all observations in the rectangle. If now a jump-like
increase or decrease occurs, the windows moves, too. In this sense g ,, is
jump-preserving.

Whereas the kernel X and the bandwidth A control the amount of past
observations used to estimate the process mean, the kernel k¥ and the band-
width M are used to specify the estimator’s sensitivity with respect to
jumps. The approach studied here requires the statistician to fix some band-
width M. The asymptotic results discussed below assume h — oc.

3.1 Construction of the control chart

Pawlak and Rafajlowicz {1999) proposed a control chart which gives a signal
when the difference M p n41 — Mp,, exceeds a threshold. In this paper we
restrict attention to Shewhart-type control charts. For instance, the one-
sided control chart is given by the stopping rule

Ny = inf{n eN: fﬁR,n,h > C}’

where ¢ denotes an appropriate upper control limit. We compare the control
statistic Mg n,n with a simple threshold, ¢, instead of a certain multiple
of the in-control standard deviation, because the variance of the statistic
Mg,n,p 18 quite intractable. To detect change-points where the process {7}
changes from a slow to a fast-varying behaviour as defined in Section 2, the
procedure can be applied to the sequence {D,} instead of {Y,}.

3.2 Choice of kernel.

Perhaps the most commonly used kernels for smoothing with respect to
time are the Gaussian, the Epanechnikov, and the uniform kernel. It is
worth noting that for the design of control charts the Laplace kernel,

1
Klrap(z) = —=ex 2z
Lap(?) ) p(—-v2|z|)
is of some interest, too, becaunse the associated kernel weights
whti,ta) = K([t: — ta /) / D K({t; = tal/R) (6)
j=1

satisfy

. U)h (t’iv tﬂ.)

limn

n—oo A(1 — A)n—t -0
if the equivalent bandwidth

hy = —v2/log(1 — A), X E (0,1] (7)
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is chosen and ¢, = v for all v € N [Schmid & Steland (1999))]. In this sense,
the corresponding linear statistic }_ . , w(t;, tn)Y; approximates the EWMA
statistic, MEWMA.R = 2ore; A1 — A)"7'Y;, which has been discussed in the
literature to some extent. Using these choices the estimator mpg,, is given
by

i A = A km (i - Y)Y

m n = T - . 8

MR = S T = k(Y ~ Vo) ®

For k a natural choice may be the uniform kernel given by ky(z) =
(1/2)1(|z| € 1), or the modified uniform kernel defined as

ks(z) = (1/2) {2 < 1) + 4, (9)

§ > 0, which attains a minimal weight 4 > 0 to each pair (Y}, ;). This kernel
satisfies the assumptions of our main results and has been studied in our
simulation study to some extent.

Remark 1: Note that the sigma filter, mp.,, converges to the classical
kernel estimator ), wn(t;,t,)Yi, employing kernel weights (6), if M tends
to oo. Thus, the parameter M controls the sensitivity with respect to jumps
relative to the classical kernel estimator. In particular, the control statistic
{8) can be regarded as a jump-preserving EWMA statistic, since
m
Moo, n1—00 MEWMA,n

Remark 2: Although in this paper we focus on kernel weights, any linear
statistic with weights w(¢;,t,) can be made jump-preserving by using the
weights

T‘E(thtn) - w(thtﬂ)kM(Y;_Y;l) / Zw(tjytn)kM(}/J"'Yn), (2 = 1, .. .,Tl.).
j=1

Remark 3 : For some applications it might be attractive to replace the ker-
nel weights ks (¥;—Y},) by some more general (pseudo)-distance D(Y;,Y,; M).
It is easy to modify the assumptions of our main results to ensure that they
still hold.

4 Main results

Having in mind that the sigma filter relies on a highly nonlinear data adap-
tive method to set up a stochastic weighting scheme, the question arises
whether the associated control chart possesses similar theoretical proper-
ties as, e.g, a Shewhart control chart based on a kernel smoother. Thus,
this section provides our main results about the stochastic behavior of the
proposed method. We start by estimating the tails of the sigma filter. Pro-
vided that the control limit is sufficiently large but fixed, the result says
that the false-alarm probability approaches 0 at an exponential rate if h,
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the bandwidth determining the memory of the control chart, tends to oc.
Assuming the classical change-point model m(t) = al(t > t,), this result
will be a building block to establish an upper bound, gy = pg{a), of the
normed delay titme which holds a.s. provided h — co. The interpretation
of these results is that for a Shewhart control chart based on the jump-
preserving sigma filter with large h (long memory) the probability that the
procedure stops after [hpg(a)] + 1 tends to 0 at an exponential rate. Our
results apply to independent but not necessarily identically distributed in-
novation processes.

4.1 Assumptions

The mathematical results of this article require some technical assumptions.
Concerning the kernel functions & and K, the following conditions are re-
quired.

(A1) The kernel K is a bounded density and symmetric around 0 with
meaﬁic}C(z) = K(0) < o0 and /J‘C(s)2 ds < o0.
z

(A2) The kernel k is non-negative, bounded, integrable, and symmetric
around 0 with

(i) k(2) > knin > 0Vz e R

(ii) max.er k(2) = k(0).

We assume that the innovation process forms a sequence of independent ran-
dom variables. However, the results below do not require that they are iden-
tically distributed but allow for heteroscedasticity. We shall need Cramér’s
condition.

(A3) {Y,,} satisfies Cramér’s condition, i.e., there is a constant ¢ > @,
such that

sup E(exp(c|Y,[)) < co.
rEN

Assumption (A3) is strong. It implies existence of the moment generating
function in a neighborhood of 0, therefore providing existence of all mo-
ments and exponential tail probabilities, i.e., P(|Y,| > z) = O(exp(—ax)),
uniformly in v, for all £ > 0 and some constant ¢ > 0 [cf. Petrov (1975),
Lemma IIL5]. If the observations Y, are uniformly bounded, the proof given
in the appendix can be simplified by applying Hoeflding’s inequality. Finally,
we confine ourselves to equidistant time designs.

(A4) Assume an equidistant design {, = v, Vv € N.



4.2 False-alarm probability when there is no drift

We will now provide the mathematical characterization of the in-control
false-alarm behavior of the Shewhart chart based on {fg}. Clearly, in-
control means that {¥,,} are independent zero-mean observations satisfying
(A3), i.e., there is no underlying drift, m(t) = 0 for all ¢ € 7. We show
that the estimator mpy , has exponential tails, asymptotically, a stochastic
property which characterizes how fast the probability that fg ,, has realiza-
tions outside an interval (—oo, x| approaches 0, if the bandwidth increases.
We need this result to characterize the asymptotic out-of-control behavior
of the normed delay in the next subsection, but it is of some interest in
its own right, since this probability is the false-alarm probability, if = is a
control limit.
The Theorem below also applies to the estimator

n
Prn =S Knl(ti — taYkn (Vi — Yo)Vi
i=1
employing weights only depending on Y; and Y,,. Note that this estimator

is also jump-preserving but has a simpler structure.

Theorem 1 Let {Y,} be a sequence of independent random variables, and
assume (Al)-{A4) and a = 0. If additionally,

nfh—= (>0 as n,h = 00,
then the following assertions hold true.
(i) There exists a constant B > 0 with
P(mpy, > z) = Olexp(—B - h))

for every z > 2M (R — 1)sup, oy E(Y,'), where Y, = max(0,V,).
(ii) There exists a constant B > 0 with
P(ftnl > 2) = O(exp(~B - h)

for every
x> px = [ [k{Q) — kmin] Slég E(Y,)/M.

4.3 An upper bound for the normed delay

To establish an upper bound for the normed delay time which is not ex-
ceeded with probability 1 if & — oo, we will now assume the classical change-
point model

Yo =a -1ty 2 tg) + €n, nen, (10)

where without loss of generality the shift, a, is assumed to be positive, and
{€,€n} is a sequence of i.i.d. zero-mean random variables with a common
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symmetric distribution function. ¢ stands for a generic copy and will be used
to simplify the notation. The normed delay time is defined by

pn = (Ni — tg)/h

where Ny = inf{n € N : |Mp.nr| > ¢} denotes the run length of the two-
sided Shewhart control chart based on {fig s} with upper control limit
e > 0.

In the sequel we shall restrict ourself to the case that the average in-
control run length, AR Lg, and hence the control limit ¢ is fixed. For the case
ARLy — oo and related studies about asymptotic efficiencies we refer to Wu
(1996} and the references given there. Brodsky and Darkhovsky (1993, Th.
4.2.8.) considered kernel charts with deterministic kernel weights providing
a signal, if

T
| Y Knlts —ta)Yil > ¢
i=n—h
for some fixed threshold ¢. They proved that the associated normed delay
time converges to py with probability 1, if py satisfies

#o ¢
K{syds = —,
0 a
provided t. = v Yv € N Notice that this result implies that randomly
stopped sums of i.i.d. random variables are asymptotically normal [Sieg-
mund {1985), IL5.]

For the sigma filter the situation is more complicated, but it is still
possible to provide an upper bound for the normed delay time for the special
case t, = 1. Then it is reasonable to redefine the normed delay as

pn = Nufh. (11)
Assumption (A2) suggests the following definition. We shall call

Ry = max k(z) / min k(z) (12)

the kernel ratio of k. Assumption (A2) ensures that R, exists. For instance,
the modified uniform kernel given by (9) provides a kernel ratio of (& +

1/2)/6.

Theorem 2 Assume (A1)-(A4). Fizx a threshold . If (10) holds with t; = 1,
then a solution py = pola) of

Po "
K{s)ds = ks

13
0 2a — (R — 1) sup, oy E(e) (13)

provides an almost sure asymptotic upper bound for py as given in (11), in
the sense that
Pl lim pr < po] = 1,
h— oo
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since for any ¢ > 0 the probability that py, exceeds py by more than € satisfies
P(pn > po +€) = Ofexp{-0O{e + O(1/h)) - h}),
and therefore converges to 0 at an ezponential rate, as h = 00, ie.,

Corollary 1 The assertion of Theorem 2 remains true for the one-sided
control chart where pp, = Np/h, and N, = inf{n € N: g, > c}.

Remark 4 : Note that by definition of py, the event {pn > po} equals {Ny, >
poh}. Thus, the Theorem studies the tail behaviour of the stopping time
Ny, for b = oo.

5 Simulations

This section presents results about the performance of the methods dis-
cussed in this paper. Since many financial time series are affected by condi-
tional heteroscedasticity, it may be not appropriate to restrict simulations
to the case of Gaussian white noise. Thus, we also performed simulations
assuming GARCH innovations. However, our primary goal was to compare
the jump-preserving proposal to the widely used EWMA control chart. Our
simulations provide some evidence that the jump-preserving proposal may
be better than the EWMA, when the structural change present in the time
series can be modeled by a rapid increase or decrease lasting for only a
short period of time, at least if the change is not too small. For simpli-
city, in our simulations we modeled a structural change by two successive
change-points, where the first change-point shifts the process mean to some
level a, and after the second one the process is again a stationary zero-mean
process.
More precisely, we generated time series according to the model

Yo=0a 10, <tp <ty +3)+ én, (n > ~39),

with ¢, = v Vv € N, where {¢,} is a sequence of zero-mean innovations,
Here t, is the first change-point in discrete time, and ¢, + s the second
one. Whereas small values for s provide peaks, for s =& co we obtain the
classical change-point model. We studied the case t, = 1, s = 3 for i.i.d.
and GARCH innovations, respectively. Further, we analyzed how the choice
of s affects the performance and investigated for the Gaussian case how the
optimal choice of M depends on the noise level. To ensure a minimal amount
of data for the control chart and to limit the dependence of simulated time
series on starting valies, a burn-in-period of size 40 was chosen.

To each generated time sertes we applied a Shewhart chart based on
{Mrn} with Mg, asin (5). The kernel k was chosen as an uniform kernet
and a modified uniform kernel, respectively, whereas we selected the Laplace
kernel for K. As shown above, for large n and M — oo the corresponding
estimator is asymptotically equivalent to the EWMA control chart, and
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can be regarded as a jump-preserving EWMA control chart if M is fixed.
The bandwidth M controlling the amount of smoothing with respect to
the y-axis was chosen as M € M = {.5,1,1.5,2,2.5,3,3.5,4,5,1000}, M =
1000 providing an approximation to the EWMA chart. To make results
comparable, for h we used equivalent bandwidths according to {7) with
A € {.02,.04,.06,.08,.1,.2}. This translates into bandwidths h ranging from
6.34 to 70.0, or, in terms of analyzing financial data on a daily basis, to time
windows ranging from one week to three months.

For each parameter setting the upper control limit ¢ yielding an in-
control average run length equal to ¢ was determined by a simulation with
500, 000 repetitions. Taking account of the burn-in-period, the run length
was re-defined as

Ny =inf{n € N:mgant15 > c(€)}.

Since for some applications in finance small values of £ seem to be appropri-
ate, we used £ = 20 corresponding to four business weeks. To take account
of the control charts’ long memory all simulations started with a pre-run
of 40 observations. Each out-of-control average run length, defined here as
the expected run length under any specilication of the simulation model
with a # 0, was estimated by a further simulation with at least 100,000
repetitions.

5.1 Gaussian i.1.d. data.

First, we generated samples with Gaussian i.i.d. innovations. The results
are shown in table 1. We found that for small jump heights moderate to
large values of M provide better results. For moderate to large jump heights
smaller values of M provided better results. Taking account of imprecision
of simulation results, it seems that this pattern applies for all A-values con-
sidered here. Further, for fixed smoothing parameter A and jump height a
the average delay considered as a function of M seems to be U-shaped for
moderate to large values of a. The effect of M on the average delay seems
to be stronger than the effect of A.

5.2 Dependence of optimal M on the noise level for Gaussian data.

The question arises how to choose the bandwidth M determining the esti-
mator’s sensitivity with respect to jumps. We expect that for a fixed peak
length s and fixed bandwidth A the optimal M depends on the standard de-
viation of the innovation process. To get some insight into this relationship
for ¢ € {0.1,0.2,...,1.0} the optimal bandwith M € M was determined
via simulation, again for an in-control ARL equal to 20. The result for s = 3
and A = 0.06 is given in figure 2.
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Table 1 Out-of-control average run lengths for Gausstan i.4.d. innovations. First
change-point ty = 1, second change-point t; + s = 3. Oplimal values of M printed
in boldface.

A o M

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4,0 5.0 1000
0.02 0.5 16.07 1597 1572 1548 15.14 14.75 14.49 14.48 14.486 14.60
.02 1 10.58 10.35 9.98 9.65 9.29 9.04 9.05 9.30 9.62 9.96
0.02 2.5 246 2.33 2.23 2.17 2.1% 2.10 2.22 2.5] 3.32 3.97
0.04 0.5 16.17 16.22 1574 1539 15.04 14.58 14.41 14.39 14.95 14.34
0.04 1 10.66 10.49 9.98 9.48 9.07 8.79 8.76 B.8B 9.67 9.45
0.04 2.5 247 2.37 2.20 2.11 2.07 2.04 2.11 2.35 3.07 3.30
0.06 0.5 16.16 16.09 16.14 15.72 14.99 14.61 14.41 14.30 14.33 14,27
0.06 1 10.67 1042 10.30 9.75 9.03 8.70 8.62 8.73 9.02 2.08
0.06 2.5 2.50 2.37 2.26 2.14 2.03 2.01 2.07 2.256 2.68 2.90
0.08 0.5 16.20 16.60 15.81 15.67 15.06 14.71 14.35 14.17 14.45 14,21
0.08 1 10.78 1090 10.11 9.70 9.05 8.7 B.46 8.57 8.01 8.87
0.08 2.5 2.52 2.48 2.23 2.13 2.02 1.9 2.04 2.17 2.52 2.67
0.10 6.5 1745 16,20 [6.10 1543 15.03 16.48 1[4.35 14.25 14.18 [4.t9
0.10 1 11.69 1059 10.30 9.56 .02 9.80 8.41 8.43 8.55 8.66
0.10 2.5 2.74 2.43 2.27 2.12 1.99 2.17 2.00 2.12 2.34 2.47
0.20 0.5 16.25 16.24 16.18 578 1522 1481 14.44 14.35 14.30 14.38
0.20 1 10.78 10.91 10.61 9.95 9.15 8.69 8.37 B8.28 829 B.37
0.20 2.5 2.53 2.58 2.37 2.46 1.99 1.91 1.91 1.94 2.02 2,08

5.2 GARCH Innovations.

Second, we modeled the innovations by a GARCH(1,1) model, i.e.,

€n = hpiln, with hi =g + alhfl_l + 516?1"1

forn > 2 and h = ag/(1 - a; — f1), where n, R N{0,1), and parameters
g, a1, and F;. Empirical results suggest that ag = 0.1, @) = 0.85, 33 = 0.1
is a realistic choice for financial time series. The results are shown in table 2.
Again it seems that smaller values of M are preferable for detection of large
Jjumps.

5.4 Peak-like deviations.

Further, we analyzed how the distance, s, between the first change-point
and the second one affects the optimal choice of M. The corresponding
results for Gaussian i.i.d. data and GARCH innovations are shown in table 3.
Our results suggest that the optimal value for M may be increasing in s.
Therefore, the jump-preserving proposal is particularly appealing when the
statistician expects that there may be a second change-point right after the
first one such that the process is in control again.
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Fig. 2 Dependence of optimal M on the noise level. First change-point at ¢ = 1,
second one at ¢ = 4. Optimal M € M for ¢ € {0.1,0.2,...,1.0}.
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5.5 Results for the modified uniform kernel.

Since our theoretical results of Section 3 require that the kernel k used for
smoothing with respect to the y-axis has an existing kernel ratio, we also
considered modified uniform kernels k5 as defined in (9) for 6 € {1/9,1/4,1/2}
corresponding to kernel ratios of Ry € {5 1/2,3,2}. Compared to the re-
sults for the uniform kernel it seems that there is now a slight tendency
that smaller values of M are preferable and result in slightly smaller out-
of-control average run lengths. However, the results are quite similar and
do not suggest that the assumption of an existing kernel ratio is restrictive.
Hence, we omit detailed simulation results.

6 Conclusions and Summary
Motivated by the fact that investors and financial analysts have to made

their decisions sequentially based on the information contained in huge se-
quential data streams from capital markets, we studied whether sequential
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Table 2 QOut-of-conirol average run lengths for GARCH innovations. Optimal
values of M printed in boldface.

A a M

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 1000
0.02 0,5 17.19 17.19 17.08 17.00 17.02 16.8] 16.56 16.21 16.01 15.93
0.02 1 12.91 12.86 12.61 12.63 12.41 12.20 11.78 11.59 11.57 12.25
0.02 2.5 4.54 4.42 4.25 4.14 4.04 3.99 4.00 4.06 4.60 6.53
0.04 0.5 17.88 17.19 17.14 17.02 16.95 16.73 16.43 16.10 15.72 15.72
0.04 1 1352 12,88 12,73 1257 1229 1198 11.63 11.33 11.21 11.67
0.04 2.5 4.81 4.44 4.27 4,13 4.01 3.88 3.78 3.82 4.25 5.72
0.06 0.5 1847 17.31 17.37 17.16 16.98 17,83 17.68 16.01 15.65 15.58
0.06 1 1395 12,98 12.97 1258 1236 1289 1265 11.24 11,08 11.30
0.06 2.5 5.00 4.52 4,32 4.15 3.9% 4.19 4.09 3.73 4,10 5.19
008 0.5 17.2¢ 17.31 18.14 17.13 17.07 16.72 1643 16.08 15,76 15.58
0.08 1 12,97 1293 13.62 12.60 1245 12,06 11.58 11.25 10.87 11.14
0.08 2.5 4.60 4.57 4.63 4.18 4.03 3.85 3.70 3.72 3.07 4.79
0.10 0.5 17.34 17.41 17.32 1752 17.01 1677 1640 16.10 16.27 15.56
0.10 1 12.99 13.08 12981 12,99 1247 1203 11.57 11.21 11.33 10.82
Q.10 2.5 4.61 4.55 4.43 4.30 4.02 3.82 3.67 3.66 4.03 4.49
0.20 0.5 17.26 17.36 1849 17.37 16.16 16.95 16.61 16.48 1596 15.71
0.20 1 13.01 13.21 14.15 13902 11.87 12.24 11.81 11.45 10.91 10.78
0.20 2.5 4.61 4.76 5.08 4.45 3.84 3.92 3.68 3.61 3.56 3.82

econcmetrics can benefit from the so-called sigma filter. The sigma filter
aims at reproducing jumps in a data set more accurately than classical me-
thods, e.g., kernel smoothers. Hence, it may be a useful tool to detect change
points in financial data streams, which may indicate structural changes and
can be important for financial decisions.

We establish two theoretical results characterizing the stochastic behav-
ior of the detection procedure. We study both the tails of the sigma filter
and the normed delay for the case that the bandwidth A, which controls the
memory of the detection procedure, tends to infinity. Assuming the classi-
cal change-point model, it is shown that the normed delay is bounded by a
deterministic constant with probability 1, if h tends to infinity.

Since sometimes structural changes are important but last only for a re-
latively short period of time, we performed computer simulations to study
how a Shewhart control chart based on a sigma filter performs when con-
fronted with the problem to detect peak-like structural changes. Our simu-
lations suggest that the first occurrence of a change-point after a zero-mean
period may be better detected by applying a control chart based on a sigma
filter, when peak-like structural changes are present in the data. However,
we also observed that in certain circumstances an approximation to the
EWMA chart obtained by M — oo performed equally well or even better.
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.,n} forms an equidistant partition of [0, (n — 1}/h] with associated size

Proof (of Theorem 1). By assumptions {Al) and (Ad) {(f,. — t:}/h
1,..

A Proofs
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1/h. Let b = sup{z € R : K(z) > 0}. Then

< 1/(2h) -sup|K'(s)| min{b, (n — 1)/h).
SER

n (n—1}/h
> Kalt: — ta) —f K(s)ds
i=1 0

(14)

Hence, Y=, Kn(t; — ta) = 1(¢) + O(1/h) where I(¢) = f5 K(s) ds. Similarly,
under the same conditions,

n <
S At — L)1) = f K2(s) ds + O(1/h), (15)
i=1 o
and, of course, for any « > 0 we also have
[ak] o
Z ]Ch(t,' - t[ah}) = /. K:(S) ds + O(l/h) (16)
$zz] 0

By (14) we have

S Kalts = talenr(¥i = Ya) > Chmin/ ML) + O(1/)}.

i=1

Therefore,
P(ﬁlﬂ!n > SE)
_ p| iz Kalts — ta)ku (Y — Ya)Yi
S Knlti = ta)kar (Vi = Ya)

n—1
< P Knlts = bl (¥ = Ya)¥s > (koo MI(Q) + OC1/1)

+P[Y, > (1/2)[K0)k(0)] ™ Thmin { () + O(L/h)} - h).

By Cramér’s condition (A3} there are constants by,be > 0 such that the
second summand is bounded by by exp(—boh). Thus, it remains to provide a
similar bound for the first term. Denote by F,,(y) the distribution function
of ¥, and observe that by independence of ¥\, ..., Y, the first term can be
written as

/P[:;Z:}C(ti ;t“)k(y"w_[ Z)Y,- > gkmin{I(C) +O(h‘1)}h] dF,(z).

(17)

Obviously, the same argument yields

P(fign > ) < fprz_] IC(t‘ ;t“)k(y’}; z)yi > :rhMJ dF,(2)
*‘l;:lexp(—béh) (18)
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for some positive constants b}, b5. Thus, providing an exponential bound
for the integrand of (17) will show (i) and (ii) provided the bound is uniform
in z € R. We proceed as follows. Let

Sn(z) =Y K([t: — ta]/B)&(2)
i=1l

where §;{z) = k([Y; — 2]/M)Y;. Note that all moments of the random vari-
ables £, (z) exist and are uniformly bounded in z € R and v € N,

Assumption (A3), the fact that the kernel k is bounded, and (Petrov (1975},
Lemma II1.5) imply that for all [t| < T"and g > (1/2) sup,.ensup, E([£.(2)—
E&(2)P)

E(exp(tK([t: — ta]/h)[&i(z) — E(&:(2))))) < exp(K([ts — ta]/h)?gt?/2),
i=1,...,n, n € N. Markov’s inequality provides for any > 0
P(Sn(z) — E(Sn(2)) > n)

< exp(—tn) [] Elexp(tk ([t  ta)/WIE() — BEE))
i=1

< exp(Kgt®/2 - tn),

where K = "' IC({t: — t,]/h)?. By minimizing the function ¢ — Kgt?/2—
it [¢f. Brodsky & Darkhovsky (1993), p. 47.], we obtain

_ | O(exp(—n*/(29K}))),n < gTK

PSa) - BS() > 0= { GEPCTIGON 1S T g

Note that {{(t, — t;)/h={(n—-i)/h:i=1,...,n~ 1} provides an equidis-

tant partition of [0,(n — 2}/h|. Thus, the definition of K and (15) give

|K/h — [ K2(s)ds| = O(1/h) which implies |(K/h)/ [$ K2 (s)ds — 1| =

O(1/h}. Consequently, h/K is bounded away from 0 for sufficiently large h.

To complete the proof we shall apply (19) with expressions for n satisfying
n > n'h for some 1’ > 0. In this case we obtain

ok

29K T 29 K

h > const h.

for a generic positive constant, uniformly in z € R. Consequently, there
exists some constant B > 0 providing

P(Sn(2) — E(Sn(2)) > n) = Olexp(-B - h))
uniformly in z € R. Using the same arguments, we also obtain
P(=[8a(2) — B(Su(2)})] > 1) = O(exp(-B' - h))
where B’ > (. To prove assertion (ii), note that

[kmin - k(U)] sup E(Y,j) < E(&;(Z)) < [k(()) - kmin] sup E(Yu+)!
vEN rEN
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since E(Y;}} = —E(Y,”) by symmetry of Y, v € N, and therefore
E(Sn(2)) > hlkmin — k(0)] SEEE(YJ){I(C) +0(1/h)} (20)

E(Sn(2)) < h[k(0) = Kin] sup E(YH{I(Q) +0(1/h)} (21)
uniformly in z € R. Using (21) to bound the r.h.s. of (18), we obtain

[ PiSa(2) = B(S1(2)) > ahb = E(S(:))] 4P (2
< PSa(2) — E(Sa(2)) > (@ - ez + O(1/h)) - M),

where gy = I(Q)[k(0) — kmin] sup,en E(Y,7)/M. Applying (19) we obtain
an exponential bound which is non-trivial, if x > pg. Similarly, for positive
constants by, by

P(—inp > z) < P(=[Sn(2) — E(Sa(2))] > zhM + E(Sn(2))} + by exp(=b3h),
where due to (20) the first term on the r.h.s. can be bounded by
P(=[Sa(2) = E(Sn(2))] > (z + px + O(1/h))MA).

The resulting exponential bound is non-trivial if z > 0. Hence, P(|fin| > )
is exponentially bounded in h as stated in (ii). To show (i}, apply (19) to
(17) with

1 = £(1/2)(kmin/M){1() + O(1/h) }h — E(8a(2)).

Observe that n = #'h with 5’ > 0, since the above estimate for E(S,(z))
provides

7 2 {z(1/20kmin /M) ~ [k(0) — kmin]sgg E(Y,NI(Q) +O0(1/h)] - h.

The estimate is non-trivial for every x > 2M (R — 1} sup, -y EY,', uniformly
inze R
Proof {of Theorem 2). Let ¢ > 0. By definition of p, and N, we have

Ppp — po > €) = P(Np > (po + €}h) < P(|Mpo+e)n| < )

where [z] denotes the largest integer smaller than or equal to z € R. Note
that
[(po+e)h]

Z Kn(ti = typgseyn) om (Yi = Yigpo4ein)) < (K(0)/M) {1/2+ O(1/h}}.

i=1

Hence P(pr—po > €) < P(|M(pyyepn)l < u+O(1/h)), where u = ck(0)/(2M)
and
[(po+e)h]
m[(ﬁa-*-f)h] = Z IB[(Po+-€)h],iYi

i=1
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with random weights

Wipo+e)h),i = Knti—tiporern)) ks (Yi—Yporern) (i =1,...,[(po+e)h]).

Since Y =a +e¢; fori = 1,...,[(po + £)h)], an application of the inequality
|$+y| Sz = |y| 2 I:‘C' T2, ,Y,2 € Ru

provides the estimate

P(lf?l[(ﬂ0+s}h]| <u+ O(l/h))

[{po+e)h] [{po+e)h]
< P( a D Wperami T D Biporon it Su+0(1/h))
i=1 i—1
[{pa+e}h]
iS P( Z "E[(po-m)h],iﬁi Zax (22)
i=1
[{po+e}h] i
)-({ ﬁ;[(pg-{-ﬁ)h],i - p + O(l/h)} + H’E)

i=1
where ps = I((}[k(0) — kmin] sup, cy Fe} /M. Note that

[{po+e)h] {(po+z}h)
Wi po+e)hli 2 (Kimin/M) Z Ka(ti = tipoten))-
=1

i=1

Now, due to (16) we have

{{pote)h] ,
1 Bl — Pote
¥ -K(M—i) = f K(s)ds + O(1/h).
= h h 0
Recall the definitions of py, Ry = &(0)/kmin, and u == ck(0)/(2M) to obtain
£ R + 21 —1 Eet
K(s)ds = S T 2HOWB — lsupyen Be L o/,
o 2a
Consequently,
P(pn — po > ¢)

[(po+e)h)
W py+e)h], i€

> ur + a{O(e) + O(l/h)}). (23)

<r(

Now an application of Theorem 1 (ii} provides

Plpn = po > €) = O(exp[—O(e + O(1/R})) - A]),

i=1

because the sum in (23) is given by

[{pa+e)h)
Y KUt = tal/BYkat(ei — €pprern))€is
i=1
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which equals the estimator my(,,4.¢)s) applied to the sample €1, .. ., €[(po+¢)a]-
Therefore, we must apply Theorem 1 with { = po + £. Since I(pg +¢) =
f2° K(s) ds + Ofe), this finally gives

pPu . CRk
K(s)ds = .
0 (s)ds 2a — [Rx — 1) sup, ey Eei

An application of the Theorem of Borel-Cantelli ensures that the event
{limp_00c pr < po} has probability 1.

Proof (of Corollary 1). The proof goes along the lines of Theorem 2,
since for the one-sided control chart the estimate (22) can be replaced by

[(po+elh] [{po+e€lh]
P(a Z W((po-+e)hjyi + Z 15[(00*-5)1‘11:15*'5“)

i=1 i=1

[(po+e}h] [{po+z)h] w+ s
< P( Z Wi(ppteyh),il—€i) > a{ Z W po4e)hl,i — } + uz)-

¢ : a
=1 f=1

Now the assertion follows, because {—¢,} satisfies the assumptions of The-
orem 1, and the weights depend on the underlying sequence only through
the differences ¢; ~ €pp4e)n) 1 = 1,..., [(po + €)].
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